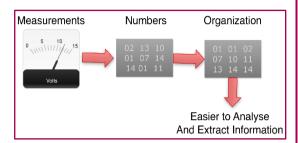


Graphical Presentation of Data

- *Statistics*: collection, organization, summarization and analysis of data, and the drawing of inferences about a body of data when only a part of the data is observed.
 - **Raw data:** measurements that have not been organized, summarized or otherwise manipulated.
 - Unless the number of observations is extremely small, it will be unlikely that these raw data will impart much information until they have been put into some kind of order.
 - > It is always easier to analyze organized data



• The ordered array:

- > The preparation of the ordered array is the *first step* in organizing data.
- It is a listing of the values of a collection (either population or sample) from the smallest value to the largest value.
- The ordered array enables one to determine quickly the value of the smallest measurement, the value of the largest measurement and the general trends in the data.

Raw data	13	3	17	9	5	7	15	11
Organized	3	5	7	9	11	13	15	17

• Grouped data:

> The Frequency Distribution

- ✓ Although a set of observations can be made more comprehensible and meaningful by means of an ordered array, further useful *summarization* may be achieved by *grouping* the data.
- ✓ To group a set of observations, we select a set of <u>non-overlapping intervals</u> such that (each value in the data set of observations can be placed in one, *and only one*, interval.
- ✓ These intervals are usually referred to as <u>Class Intervals</u>
- ✓ Usually, class intervals are ordered from smallest to largest.
- ✓ Interval width = (UL-LL+1) OR (UL_2-UL_1) OR (LL_2-LL_1)
 - In this table the Interval width = 19-10+1=10 or 20-10=10
- ✓ *Mid interval* is the best value that represents each interval, and it

Equals:
$$\left(\frac{UL+LL}{2}\right)$$

Mid interval =
$$(\frac{10+19}{2}) = 14.5$$

Construction of Frequency Distribution Table

- ✓ How many intervals should we use? (0-100 years)
 - Too few intervals are undesirable because of the resulting loss of information. (0-50, 51-100) two intervals.
 - Too many intervals, on the other hand, will not meet the objective of summarization. (0-1, 2-3,4-5,99-100)!!
 - A commonly used rule is there should be *no fewer than six intervals and no more than 15*.
 (6-15 is optimal)

Class Interval	Frequency
10-19	4
20-29	66
30-39	47
40-49	36
50-59	12
60-69	4
Total	169

- ✓ To know how many class intervals to employ we use *Sturge's rule*
 - k = 1 + 3.322 * (log10 n) → Rounded to nearest integer
 k: Number of intervals, n is number of observations
 - The rule is just used as guidance and should not *be applied strictly*.
 - The size of the class interval is often selected as 5, 10, 15 or 20 etc.

✓ The width of class intervals:

- Class intervals should be generally of the <u>same width.</u>
- The width may be obtained by dividing the range by k, the number of class intervals.
- Interval width = Range/k

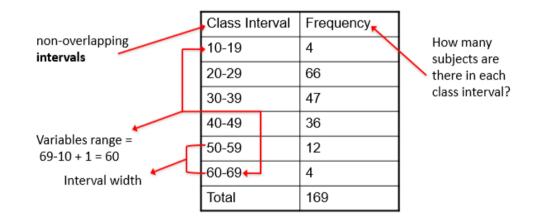
★ Example 1:

Tablet hardness values range between 50 and 120 N, calculate the recommended number of intervals and the interval width for data contains **60 values** of tablet hardness?? n = 60

- **Range** = largest smallest = 120-50 = 70
- # intervals=1+3.329 (log n) =1+3.329 (log 60) = 7
- Interval width=k/n=70/7=10

★ Example 2:

Frequency distribution *non-overlapping* of ages of 169 subjects.



• The relative frequency distribution

- It may be useful sometimes to know the *proportion* rather than the number of values falling between a particular class interval.
- We obtain this information by dividing the number of values in the particular class interval by the *total* number of values.
- We refer to the proportion of values falling within a class interval as the *relative frequency* of values in that interval (we call it probability distribution).
 - The total of relative frequency for all intervals must be 1

Class Interval	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
10-19	4	0.0237	4	0.0237
20-29	66	0.3905	70	0.4142
30-39	47	0.2781	117	0.6923
40-49	36	0.2130	153	0.9053
50-59	12	0.0710	165	0.9763
60-69	4	0.0237	169	1.0000
Total	169	1.0000		

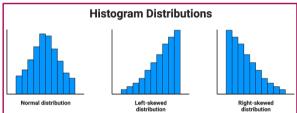
- We may sum (*cumulate*) the frequencies and relative frequencies to facilitate obtaining information regarding frequency or relative frequency of values within two or more contiguous class intervals.
- *Cumulative frequency*: number of subjects with values <u>below</u> the UL.
- The total of cumulative relative frequency for all intervals *must be 1*
- The percentage of each interval = % fr = *relative frequency** 100%

- Using true limits is very essential to calculate statistics (range, median, etc.) of grouped data.
- *Upper true limit* = upper class value + 0.5
- *Lower true limit* = lower class value 0.5

Intervals	True limits	frequency
1019	9.5-19.5	4
20-29	19.5-29.5	66
30-39	29.5-39.5	47
40-49	39.5-49.5	36
50-59	49.5-59.5	12
60-69	59.5-69.5	4

• Histogram:

- We may display a frequency distribution (or a relative frequency distribution) graphically in the form of a histogram, which is a special type of bar graph.
- When we construct a histogram, the *variables* under consideration are represented by the horizontal (x) axis, while the *frequency* (or relative frequency) of occurrence is the (y) axis.



★ Example:

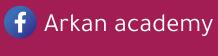
A school nurse weighed 30 students in Year 10. Their weights (in kg) were recorded as follows:

50	52	53	54	55	65	60	70	48	63
74	40	46	59	68	44	47	56	49	58
63	66	68	61	57	58	62	52	56	58

- 1. Use the data above to construct a frequency table.
 - ✓ **Range** = 74-40=34
 - \checkmark Let width of class interval = 5
 - ✓ # intervals =34/5=7 There are 7 class intervals
- 2. Complete the table to calculate:
 - cumulative frequency
 - relative frequencies
 - cumulative relative frequencies

Class interval	Tally	Frequency
x(weight in kg)		f
40 - 44	П	2
45 - 49	1111	4
50 - 54	++++-	5
55 - 59	++++ +++	8
60 - 64	-+++-	5
65 - 69	111	4
70 - 74	П	2
		30

[✓] We use *true limits* to fill the gaps between intervals for a continuous variable.



O Arkanacademy

🛞 www.arkan-academy.com

+962 790408805